NONSTATIONARY WAVES PROPAGATING ALONG
A MAGNETIC FIELD IN A PLASMA

Yu. A. Berezin and G. I. Dudnikova

The results of a numerical solution of the problem of the propagation of shock waves along a magnetic
field in a cold rarefied plasma are presented. The parameters of the shock wave in the quasi-stationary
phase for small Mach numbers M £ 2 are presented. For values Mx ~ 4 the velocity profiles and the
particle densities tend to become discontinuous,

Stationary solitary waves which propagate along the magnetic field in a cold plasma have been con-
sidered in [1-3].

NOTATION
c — velocity of light Xg - Euler coordinate of the particles in
me — electron mass units of ¢/ w;,
mj —mass of an ion wjg — cyclotron frequency of the jons
B — ratio of the electron mass to the weH — cyclotron frequency of the electrons
ion mass W — frequency of the magnetic field in
t — time units of wiyg
e — charge of the electron & max— coordinate of the plane of symmetry
wpi — plasma frequency in units of ¢/ wyj
H — magnetic field strength Ux v,z ~ projections of the mass velocity of
w,., ~—frequency of the magnetic field at the particles on the x, y, and z axes
the plasma-vacuum boundary in units of V5
VA — Alfvén velocity hy z — projections of the magnetic field on
V. — volume in units of Nj? the y and z axes in units of H,
N — particle density A — width of the wave front in units of
¢ — Lagrange coordinate of the ¢/ woi
particles in units of ¢/ Wi Aux — width of the particle velocity front
T — time in units of ¢/ (wy;Va) in units of ¢/ wyy
veff — effective collision frequency Ay  — width of the particle density front
" — collision frequency in units of in units of ¢/wyi
weH h;, - transverse magnetic field in units
up T mass velocity of the particles of H,
u — mass velocity of the particles in

units of V5

At the initial instant of time the cold quasi-neutral uniform plasma with density N, fills the half-
space x > 0 (the x axis is in the direction of the unperturbed magnetic field Hy). Then, at the boundary of
the plasma x = 0 the z component of the magnetic field starts to increase according to a certain law, as a
result of which plane perturbations propagate along the x axis. The initial system of equations, written for
convenience in dimensionless variables and Lagrange coordinates, has the following form:
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where v off is the effective collision frequency, which is assumed to be constant.

This system of equations is obtained as a particular solution of system (1.4) in [4]. To solve the
problem we assume the following initial and boundary conditions:

U, (Ev 0) = uy (Ev 0) = uzv(gv 0) = 01_ Ty (51 0) = E
VE ) =1, k(0 =hE0)=0 h©7)=0

ok, ok 2
hy 0, %) = Af (1), 57~ Emax »T) = “a—gL Emax - T) =0 ®

A== H_[H,==—const

Here A is the amplitude of the magnetic field. The function f(7) is taken in the form

f@y=1—exp(—o1) o [f()=siner, o=o0_/ay

Problem (1), (2) was solved on a computer using a difference scheme of the second order of accuracy.
Typical profiles of the magnetic field as a function of the Euler coordinate x for small Mach numbers M < 2
at successive instants of time are shown in Fig. la (the continuous lines are for hy, and the broken lines
are for h, = x/hy2 + hzz). Curves 1, 2, and 3 correspondto 7 =24, 4.8, and 6.4, The calculations were
carried out for n = 0.2, A=2, and M = 1.45. For these values we calculated the particle density profiles at
different instants of time; these are shown in Fig. 1b, where curves 1, 2, 3, 4, and 5 correspond to 7 = 2.4,
4.0,4.8,5.6, and 6.4.

In agreement with the law of the dispersion of waves [5] which propagate along the magnetic field in
the region of frequencies w ~ we}, the profiles of the transverse components of the magnetic field have an
oscillatory form. The spatial period of the oscillations is of the order of ¢/w,j. The phase shift between
the z component and the y component of the magnetic field is 90°. For comparatively low Mach numbers,
the shock wave which is formed is characterized by approximately constant front width A, since the non-
linear effects are compensated by dissipative and dispersion effects. Calculations with w = 0.25 and w» =
0.2 show that an increase in the amplitude of the magnetic field leads to an increase in the velocity of the

steady-state shock wave; thus, the values M = 1.4, 1.45, and 2.0, and A = 4.6, 4.0, and 3.0, correspond to
the values A = 1.5, 2.0, and 3.0,
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A continuous increase in the density occurs while the wave is being formed. The bend which occurs
on the density profile after a certain time corresponds to departure of the wave from the piston. A further
increase in the magnetic field at the boundary leads to a sharp pileup of the plasma, the result of which is
a discontinuity in the density in the region of the piston.

An increase in the amplitude of the magnetic field at the boundary leads to very nonstationary wave
conditions; the slope of the particle density profile and the x component of the velocity increase consider-
ably (Fig. 1c). This rearrangement of the wave structure indicates that an inversion stage is being ap-
proached. For example, for the case A = 8, and » = 0.5, the critical Mach number M, , at which the above
phenomena occur, is approximately 4.

The authors thank R. Z. Sagdeev for useful discussions,
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